Research has established that individual student interest has a positive effect on learning and academic achievement. However, little is known about the impact of a blended learning approach on individual student interest and whether combinations of online and face-to-face learning activities significantly enhance student interest. This paper assesses the effect of blended learning on perceived individual student interest, utilizing a blend of online and face-to-face discussions. The study employed a quasi-experimental design consisting of two different treatment groups, online discussions versus face-to-face discussions. Data were analyzed using the t-test technique. Results from the study suggest that there was no statistical difference in subjects’ perception of interest in both the online and face-to-face discussions. However, from observation, subjects in the online discussions were eager to engage in textual dialogue and therefore, participated more in the discussions compared to the face-to-face discussions.

INTRODUCTION

Colleges and universities share a common mission to educate their students in the best possible way, by creating environments where students are intellectually challenged, where current and relevant subject matter is disseminated in a professional manner and where lifelong learning and high standards are fostered (Ranwez, Leidig, & Crampes, 2000). How, given the technologies of the 21st century, can educators accomplish this mission?
Universities are facing a restructuring of traditional educational paradigms. What is emerging within this restructuring is a blended learning model that combines the best practices of online and face-to-face formats (Bonk & Graham, 2005; Boyle, Bradley, Chalk, Jones, & Pickard, 2003). Blended learning offers the convenience of the online format without the loss of face-to-face contact (Dziuban, Hartman, & Moskal, 2004). By combining face-to-face and computer-mediated elements into a blended learning activity, the learning activities become more authentic for the students. Moreover, when technology is used as a tool to support students in performing authentic tasks, the students are in a position to define their goals, make decisions and evaluate their progress (Leidner & Jarvenpaa, 1995).

Both online and face-to-face delivery have the potential to facilitate environments (1) where meaningful and authentic learning takes place; (2) where construction of knowledge is promoted; (3) where collaboration and conversation (between and among students and instructors) is supported; (4) where student intrinsic interest may be significantly increased. However, a major problem is that we presently lack information as to how to effectively make use of blended learning environments in order to promote active learning, collaboration and problem solving skills of individual students. It is not only difficult to assess how students learn but also how well they adapt to these learning environments.

Reviews of motivation in education (Ryan & Deci, 2000), recognize increasingly the importance of individual student interest and its role in individual learning and achievement. When educational environments provide rich sources of stimulation and a context of autonomy, learning is likely to flourish. For most students, there are significant portions of the academic curriculum that are not compelling or inherently interesting and therefore students do not appear to be interested in their respective learning activities (Renninger, 2000).

Growing evidence in educational literature strongly suggests that such issues have significant implications that extend well beyond learning and achievement. Consequently, individual student interest needs to be assessed not only for its success in evaluating performance and achievement, but also for its impact in the broader and more significant areas of individual development (Vansteenkiste, Simons, Lens, Sheldon, & Deci, 2004). Examples of interest towards learning would be students who attend a course because they find it interesting or satisfying to learn more or who learn for the pleasure of constantly surpassing themselves.

The following research question seeks to assess the effects of perceived interest of individual students utilizing a blended learning approach: are perceptions of student interest higher in online discussions compared to traditional face-to-face discussions utilizing this type of blended learning approach? The intention of this research is to create a blended learning plat-
form that allows students to interact and collaborate in both online and face-to-face settings. Interaction and collaboration is one of the most important components of learning experiences in both online and face-to-face environments (Jonassen, Peck, & Wilson, 1999; Vygotsky, 1978). Collaborative enquiry offers a different model of learning from that provided by traditional lecture and classroom-based methods (Ocker & Yaverbaum, 2002). However, recently developed instructional and communication technologies can facilitate the collaborative learning process for students by adding structure to their group experiences and giving them additional tools to support their work (Hiltz, 1990; Warschauer, 1997).

This research has long-term significance for students, instructors, institutions and society at large. The information that can be gained from assessment can be valuable in enabling students’ higher-order cognitions, active learning and self-regulated learning. The use of a blended learning approach also has the potential to change the nature of learning environments and the ways in which we design both online and face-to-face activities to support intellectual development, including the motivational strategies involved in learning. Assessing the effects of individual student interest utilizing a blended learning approach should play a pivotal role in enhancing learning and furthering this research.

Considerable discussions emanating from academic debate and research surround the emergence of blended learning environments. The article first integrates and synthesizes content regarding (a) blended learning environments and (b) interest. The article concludes with a discussion of the results and the implications of these results.

Blended Learning Environments

What many universities are exploring is a unique combination of what is referred to as blended learning, in which a portion of the learning activities have been moved online. Blended learning is course delivery that utilizes more than one method of providing information to the learner (Garrison & Kanuka, 2004). This concept has been made more prevalent as the introduction of new technologies has offered new instructional delivery mechanisms that ultimately create new blends. The term is used to describe the utilization of computer-based online curriculum delivery with a mix of instructor-led face-to-face classroom delivery (Osguthorpe & Graham, 2003). Blended learning has been utilized by the teaching profession as addition to a classroom capability and is usually synonymous with instruction that involves a mix of face-to-face and online instruction (Novak, Gavrin, Christian, & Patterson, 1999). As faculties consider realigning their courses to this new delivery format, many issues arise, including the perception that teaching online is the same as teaching face-to-face (Bleed, 2001).

In the past decade there has been an increase in utilization of educational technology by educators. Dede (1996) warns that simply using technolo-
gy as a tool for learning, instead as a means to deliver appropriately designed content, will lead to failure. This technology is not valuable unless it is properly and effectively incorporated into the content and methodology of the course. Instructors need to employ the appropriate technology by creating an educational platform that interests, excites and motivates students to learn. These platforms can also serve as portals to more in-depth advanced information if a learner wishes to proceed further than the required curriculum (Vaughan, 2007).

The main component that differentiates blended from face-to-face instruction is the use of more than one delivery method, which includes the use of computer-based instruction that can be implemented in a traditional classroom-based format (Thorne, 2003). The involvement of students in the blended learning environment is the key to their success in the learning process. In both online and face-to-face instruction, the learners and instructors interact, share ideas and generally try to support one another throughout the learning cycle (Boyle, 2005). This type of collaborative learning has been found essential for learners to integrate new information with existing knowledge to create new ideas (Bosworth & Hamilton, 1994). The learners are better able to assimilate new information and solve problems when working in collaboration with others (Ocker & Yaverbaum, 2002). The unique feature of collaborative learning is its emphasis not only on individual learner effort but also on group coordination, shared understanding and even confrontation to achieve a common goal (Bosworth & Hamilton, 1994; Edelson, Pea, & Gomez, 1995).

Blended learning is an approach that optimizes learning by incorporating the use of technologies with regular class-based teaching strategies, depending on the requirements of the course and its learner (Osguthorpe & Graham, 2003). These practices can be in the form of regular classroom instruction coupled with online activities, self-paced tutorials, online assessment, online surveys, etc., to help facilitate learning. Once areas, classroom and online delivery have been implemented successfully, the focus can be shifted to a combination of the two. The combination or “blend” would allow for increased flexibility, responsibility and control to students for their learning (Garrison & Kanuka, 2004). For example, both online and face-to-face delivery can facilitate access to worldwide sharing of ideas and knowledge (Boyle, Bradley, Chalk, Jones, & Pickard, 2003). This type of interactive simulation and problem solving programs create interest and increase the knowledge gained because they involve focusing and thinking.

Interest

Interest is a construct that is full of rich meaning both for individuals and researchers. In everyday language, we use interest in three ways: “I’m interested in…;” “That looks interesting;” and, “I had an interesting experience.”
Krapp, Hidi and Renninger (1992) suggested that interest be conceptualized as situational interest.

Situational interest is defined as the appealing effect of an activity or learning task on an individual, rather than the individual's personal preference for that activity (Hidi & Anderson, 1992). Recently, educational researchers have focused on situational interest in an effort to explore its potential for motivating students to learn. It is described as an interactive or relational construct because it “flows from a person's relationship with a particular activity” (Reeve & Deci, 1996). In learning, situational interest results from students' recognition of the appealing features associated with a specific learning task (Mitchell, 1993). Situational interest has been found to have unique short-term and long-term motivational effects an individual learner and has been considered a powerful motivator that guides learners to participate in learning (Deci & Ryan, 1992; Renninger, 2000).

Situational interest is generated by particular conditions and/or objects in the environment that focus attention – it represents an affective reaction that may or may not last (Hidi & Berndorff, 1998; Murphy & Alexander, 2000). This initial affective reaction may be positive or negative in tone (Irannejad, 1987). Mitchell (1993) suggested that situational interest is conceptualized as having two potential stages – catching interest and holding interest. According to Mitchell (1993), the shift from catching to holding an individual's situational interest, requires learning conditions that make the content of learning meaningful for that individual according to his or her actual goals and longer lasting motives and values. Catching interest suggests that the interest that an individual already experiences is being diverted toward the situation. Holding interest refers to the continued psychological state of interest of an individual. Mitchell (1993) experimentally investigated this distinction and found support for the two-stage model. Considering these two stages of situational interest, Hidi and Harackiewicz (2000) argued that it is only when situational interest is triggered and maintained, that it is considered as intrinsically motivated behavior.

It follows from the above that situational interest triggers an individual’s motivation to engage in gaining the knowledge and skills he or she lacks original individual interest in. In general, situationally interesting activities motivate learners and result in higher levels of achievement. However, the effects of situational interest on achievement rely on its relevance to the content within the activity (Harp & Mayer, 1997). Thus, situational interest can be viewed as evolving along with an individual’s knowledge repertoire and value system. It allows recognition of the meaning in a learning task, leads to meaningful learning behaviors, promotes long-term storage of knowledge and provides motivation for continued engagement in learning (Schiefele, 1999). Hidi and Anderson (1992) however, argue that situational interest is narrowly focused and difficult to alter. Therefore, in a learning context,
using each student's interest to facilitate learning a particular subject can be an extremely difficult task for instructors.

Reviews of motivation in education (Ryan & Deci, 2000), recognize increasingly the importance of situational interest in individual learning and achievement. When educational environments provide rich sources of stimulation and a context of autonomy, learning is likely to flourish. For most students, there are significant portions of the academic curriculum that are not compelling or inherently interesting and therefore students do not appear to be motivated in their respective learning activities (Renninger, 2000). Examples of situational interest towards learning would be students who attend a course because they find it interesting or satisfying to learn more or who learn for the pleasure of constantly surpassing themselves. As applied to learning behavior, if an individual feels personally interested or attracted to a learning activity, they will be more likely to seek out opportunities to participate. Involvement, finally, is characterized by interest in a particular social context (Ryan, 1994).

Recently, educational researchers have focused on situational interest in an effort to explore its potential for motivating students to learn. It is described as an interactive or relational construct because it “flows from a person's relationship with a particular activity” (Reeve & Deci, 1996). In learning, situational interest results from students' recognition of the appealing features associated with a specific learning task (Mitchell, 1993). Situational interest has been found to have unique short-term and long-term motivational effects an individual learner and has been considered a powerful motivator that guides learners to participate in learning (Deci & Ryan, 1992; Renninger, 2000).

In education, it is presumed that situational interest can integrate a student's experiences outside the school in the learning process, encourage the student to use prior knowledge in pursuing new knowledge and motivate him or her to engage in learning tasks at hand (Dewey, 1913). Research findings support these arguments and clarify the function of situational interest in education, conceptually as well as empirically (Hidi & Anderson, 1992; Renninger, 2000).

Building on the preceding literature review, the following hypothesis was formed: Utilizing a blend of online and face-to-face discussion, perceptions of individual students’ interest will be higher in online discussions compared to face-to-face discussions. The hypothesis maintains perceptions of individual students’ interest will be higher in online discussions compared to face-to-face discussions. Online discussions may increase individual perceived interest because the task of engaging in an electronic discussion, for example, is novel and may lure the participant into action (i.e., entice or intrigue them). A variety of characteristics have also been associated with interest: (1) New, different, unusual materials, tasks or situations; (2) High activity levels of
emotional content; (3) Information an individual can easily follow. Per se, online discussions may increase situational interest, because the richness of the interactive discussions through text or the sharing of topics or ideas may elicit behavior that is intriguing or enticing to an individual.

RESEARCH METHODOLOGY

The following formalized research model (Figure 1) will be used as a point of departure for this research and thus forms the basis of the research question presented in this article.

The research plan comprised use of a blended learning design of both online technology-supported and face-to-face discussions. Assessment was based on learning activities within the discussions that allowed individual students to interact together. The objective was to assess the effect of blended learning on perceptions of individual interest in online and face-to-face discussions. The independent variable consisted of the blended learning mode (i.e., online and face-to-face discussions). The dependent variable was represented by the construct of perceived interest.

Setting

Students from the Bachelor of Business Administration (BBA) program taking the FB2501 Management of Information Systems (MIS2) course, constituted a large pool of available subjects, who fit well within the context and purpose of this exploratory study. The selection of this course was based on the following criteria: Firstly, this course provided a rich opportunity for applying a blended learning approach comprising of technology and non-technology support to both online and face-to-face classroom environments. Secondly, learning activities in the form of online and face-to-face discussions were structured into the design and organization of the course. We expected students to engage in “expert-like” ways of thinking, acting and problem solving (e.g., making interpretations, engaging in negotiations, pro-

![Figure 1. Research model.](image-url)
viding rationales and reaching conclusions) in both the online and face-to-face discussions.

The Blackboard™ course management system was chosen to supplement this study for two reasons. Firstly, the software is an existing available resource acquired by the Faculty of Business at the City University of Hong Kong. Secondly, the Faculty of Business has taken on the responsibility of this software management, staff in-service training and administration of Blackboard™. The reasons for choosing Blackboard™ also extend beyond the availability and convenience of the software. This software provides various pre-built course management solutions as well as the addition of an Internet-based component to the course. The software also provides a structure of customizable tools.

Online discussion boards through Blackboard™ Virtual Classroom promote reflection and analysis, thus enabling discussions among all student participants. Knowing that their comments will be available at all time to the instructor, students should typically take more time to consider, write and edit their thoughts, as well as support them using quotes, hyperlinks and attachments. In addition, the online discussions help students learn to appreciate and evaluate positions that others express. This gives them the opportunity to be challenged, corrected and questioned by their peers, thereby inviting students into a community of practice that motivates them to learn the subject matter and helps them to gain social skills.

Once the overall course structure had been determined, learning activities were designed for both the online and face-to-face discussions. For example, the blended learning approach of online (using the Blackboard™ Virtual Classroom) and face-to-face discussions were structured around the case method to engage students in more expert-like ways of thinking, acting and problem solving (i.e. searching for learning resources, making interpretations, engaging in negotiations, providing rationales and reaching conclusions) (Collins, 1990).

Research Procedures

A quasi-experimental design of the study consisted of two different treatment groups (technology-supported discussions and face-to-face discussions). Students taking the FB2501 course in semester A, represented a sample size (n=77) sufficient enough to operationalize this study (Cochran, 1963). Each tutorial had an average class size of 17-21 undergraduate students. The content material of the activities within both tutorials was identical. Four tutorials running consecutively within the same week resulted in the following two treatment conditions (see Table 1 and 2).

From weeks 2-3, all students in each tutorial were trained in the use of the Blackboard™ Virtual Classroom. In the first instance (see Table 1), 77 students from tutorials 1-4, participated in the online Virtual Classroom via
Blackboard™ from weeks 4-6 facilitated by the Teaching Assistant (i.e., researcher). At the end of the technology-supported online discussion (week 6) using the Blackboard™ Virtual Classroom, the online discussion version of the survey on perceived interest was administered to the students to fill out. After completion of three weeks (weeks 4-6), the four tutorials were switched around as follows:

In the second instance (see Table 2), the same students from tutorials 1-4, who had participated in treatment 1 (technology-supported tutorials) in weeks 4-6, were then switched to the non technology-supported face-to-face classroom environment. They participated in traditional face-to-face classroom discussions from weeks 9-11, facilitated by the Teaching Assistant. At the end of the non technology-supported face-to-face discussion (Week 11), the face-to-face discussion version of the survey on perceived interest was administered to the students to fill out.

Table 1
Treatment 1 (Technology-Supported Online Discussion)

<table>
<thead>
<tr>
<th>Treatment 1</th>
<th>Type of Activity</th>
<th>Sample Size</th>
<th>Duration of Exercise</th>
<th>Facilitated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial 1</td>
<td>Technology Supported online discussions</td>
<td>19</td>
<td>Weeks 4-6</td>
<td>TA 1 (Researcher)</td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>Technology Supported online discussions</td>
<td>17</td>
<td>Weeks 4-6</td>
<td>TA1(Researcher)</td>
</tr>
<tr>
<td>Tutorial 3</td>
<td>Technology Supported online discussions</td>
<td>20</td>
<td>Weeks 4-6</td>
<td>TA1(Researcher)</td>
</tr>
<tr>
<td>Tutorial 4</td>
<td>Technology Supported online discussions</td>
<td>21</td>
<td>Weeks 4-6</td>
<td>TA1(Researcher)</td>
</tr>
</tbody>
</table>

Table 2
Treatment 1 (Non Technology-Supported Face-To-Face Discussion)

<table>
<thead>
<tr>
<th>Treatment 2</th>
<th>Type of Activity</th>
<th>Sample Size</th>
<th>Duration of Exercise</th>
<th>Facilitated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial 1</td>
<td>Non technology-supported face-to-face classroom discussions</td>
<td>19</td>
<td>Weeks 9-11</td>
<td>TA 1 (Researcher)</td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>Non technology-supported face-to-face classroom discussions</td>
<td>17</td>
<td>Weeks 9-11</td>
<td>TA 1 (Researcher)</td>
</tr>
<tr>
<td>Tutorial 3</td>
<td>Non technology-supported face-to-face classroom discussions</td>
<td>20</td>
<td>Weeks 9-11</td>
<td>TA1(Researcher)</td>
</tr>
<tr>
<td>Tutorial 4</td>
<td>Non technology-supported face-to-face classroom discussions</td>
<td>21</td>
<td>Weeks 9-11</td>
<td>TA 1 (Researcher)</td>
</tr>
</tbody>
</table>
Instrument Development

The Moore and Benbasat (1991) development procedure was utilized to create and test the survey instrument. Based on (Moore & Benbasat, 1991), the following three-stage development process helped clarify and refine the items and constructs of the survey instrument: 1) item creation; 2) card sorting; and 3) instrument testing. The items were generated from a comprehensive review of the literature on situational interest and verified following the card sorting procedure proposed by Moore and Benbasat (1991) to further ensure discriminant validity. The measurement instrument was developed using a five-point Likert-type scale, from 1=Strongly Agree to 5=Strongly Disagree.

The method of item creation, proposed by Moore and Benbasat (1991), provided a high degree of confidence in their content validity, construct validity and reliability. The survey instrument (both online and face-to-face) used in this study was developed from several sources, including instruments developed by other researchers and literature on situational interest and intrinsic motivation theory (see Table 3 and 4).

The creation of the items was performed by listing each construct to be tested. For each construct, from a pool of relevant items, the most appropriate was chosen, taking into consideration that the results of the instrument must show a score in construct validity and reliability. Items were adapted

| Table 3 |
| Items of Perceived Interest (Online Discussions) |

<table>
<thead>
<tr>
<th>Perceived Interest (Online)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INT1 I would say discussing online is very interesting.</td>
<td>Adapted from Deci and Ryan</td>
</tr>
<tr>
<td>INT2 I enjoyed discussing online.</td>
<td></td>
</tr>
<tr>
<td>INT3 I felt that discussing online held my attention.</td>
<td></td>
</tr>
<tr>
<td>INT4 I felt discussing online was fun to do.</td>
<td></td>
</tr>
</tbody>
</table>

| Table 4 |
| Items of Perceived Interest (Face-to-Face Discussions) |

<table>
<thead>
<tr>
<th>Perceived Interest (Face-to-Face)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I would say discussing face-to-face is very interesting.</td>
<td>Adapted from Deci and Ryan</td>
</tr>
<tr>
<td>I enjoyed discussing face-to-face.</td>
<td></td>
</tr>
<tr>
<td>I felt that discussing face-to-face held my attention.</td>
<td></td>
</tr>
<tr>
<td>I felt discussing face-to-face was fun to do.</td>
<td></td>
</tr>
</tbody>
</table>
from the original survey, with appropriate modifications to make them specifically relevant to the study.

RESULTS

The collected data were analyzed using a t-test. A t-test was performed to measure the main effects of online and face-to-face discussions on perceived interest. The criterion level of $p < 0.05$ was accepted as support in this study, while partial support was acknowledged at significance levels between 0.05 and 0.10. The survey data ($p=1.00$), indicated that subjects in the online discussions did not have a more positive perception of their own interests. The survey data, therefore, suggested that there was no statistical difference in individual interest for both the online discussions and face-to-face discussions.

DISCUSSION AND FURTHER RESEARCH

With reference to the main effects of online discussions on individual interest, the findings of the study indicated that subjects in the online discussions were not found to enhance individual perceptions of how interesting it was, to participate in these discussions. The survey data suggested that there was no statistical difference in interest for both the online discussions and face-to-face discussions.

It has also been observed that factors in the environment trigger individual interest. Specifically, interest emerges in response to specific features present in the environment. For example, just about any individual – with or without experience in use of online discussions – may be captivated by the use of the electronic interface, perhaps because it is visually appealing, perceived as easy to use (Venkatesh, 2000) and is able to command his or her attention to engage in discussions in more innovative ways, as compared to face-to-face discussions. The online discussions may have been engaging in the first instance, but a more general interest in the discussions, whether online or face-to-face, may need to have been rooted in the individual, in order for that interest to endure over time. Therefore, if intrinsic factors are expected to spawn interest, then these factors must foster a personal connection between the individual and the domain (Hidi & Berndorff, 1998).

A long tradition of research on assessing student intrinsic motivation, suggests that the motivation to engage in a task, can evolve from the value inherent in doing that task (Deci, 1975). This value is an essential facet of individual perceived interest. It is undeniable, that the subjects in this study, in both the online and face-to-face discussions, entered these blended learning contexts with varying levels of interest. Past experiences of engaging in both online and face-to-face discussions, may have affected their learning experiences, thus resulting in individual interest that endured over time.
Moreover, if the presence of certain features in the classroom, support the development of individual interest, then instructors may be able to fashion classroom discussions, in ways that promote individual interest in their students (Hidi & Harackiewicz, 2000).

Research has shown that interest must be present in the classroom to satisfy an individual’s intellectual and personal needs. Secondly, research has also shown that interest is fostered by providing an individual with a variety of educational opportunities that promote his or her involvement and in which tasks or activities are accompanied by positive feelings. Prior research findings support three general conclusions: (1) Individual interest is related to intrinsic motivation. (2) Interest varies from individual to individual. (3) Individual interest is elicited by factors that promote active involvement. Hence, the blended learning environment seemed to help encourage subjects to be active learners, by providing them various opportunities to identify what they already knew, wanted to know and had learnt. To conclude, highlighting the relevance of individual goals for a learning activity, may increase individual interest, because the values and skills an individual possesses, are relative to his or her perceived interest in that activity.

For future research, we strongly suggest investigation of the various aspects of Malone and Lepper’s individual intrinsic motivation types such as fantasy, playfulness and control (Malone & Lepper, 1987). Valuable information can be garnered from such research. For instance, Malone and Lepper (1987) mentioned that, the extent to which individuals are treating technology systems, “Not as tools to achieve external goals, but as toys to use for their own sake,” increases the fantasy and control aspect of the system, thus increasing intrinsic motivation. By redesigning these environments in which fantasy and control are present, in an intrinsically appealing way, higher levels of motivation could result, along with more time spent interacting with the technology.

Future research may also benefit from using other sources of data such as, computer file exchange, electronic meeting logs and online discussion transcripts. Data could be analyzed in relation to specific key participants, settings, behavior and activities, relevant to the theoretical framework and the emergent interests and outcomes. Additionally, other dependent variables, such as fantasy (Malone & Lepper, 1987; Parker & Lepper, 1992) and control (Harter & Connell, 1984), referred to earlier and creativity (Amabile, 1996), relevant to investigating the individual perceptions of student intrinsic motivation in online and face-to-face discussions, could also extend the scope of future studies.

The above suggestions for future research could potentially build upon our results, because such research may be essential in order to improve our understanding of the effects of online and face-to-face discussions on factors supporting individual student intrinsic motivation. For example, the results of this study can be used as base-line data for future studies. In addition, the
results garnered from this study may also enable the development of improved methods of integrating technology into the classroom environment and consequently be used as a knowledge construction tool in which individual students work together in a collaborative setting. Such a learning environment allows students to actively discover their own thought processes and apply new knowledge appropriately.

CONCLUSION

This study suggests that there was no statistical difference in subjects’ perception of interest in both the online and face-to-face discussion, utilizing a blended learning approach. However, from observation, subjects in the online discussions were eager to engage in textual dialogue and therefore, participated more in the discussions compared to the face-to-face discussions. Further, these subjects were excited to start working with the Blackboard Virtual Classroom. On the other hand, the subjects in the face-to-face discussions were not as eager to participate in verbal dialogue and displayed resistance towards participation in the same.

Similarly, the online discussions were able to stimulate the subjects through the use of content and graphics. We clearly perceived that the use of online discussions stimulated students’ interest in using the Blackboard Virtual Classroom program. Similarly, Malone (1981) demonstrated how an individual felt increased motivation when he or she had the ability to “shoot” at the right answer in a math computer game. His study, clearly demonstrated that computer programs provide a challenge to an individual, thereby providing a more meaningful learning environment and higher intrinsic motivation.

In addition to the research on intrinsic motivation in this study, there were visual implications that can be drawn about the effects of online discussions. The subjects, who were part of the online discussions, were excited about the use of computers and, especially, the use of the Blackboard Virtual Classroom program. We noticed that the subjects seemed eager to arrive at the computer laboratory and work on their computers. Once in the laboratory, they would immediately log into Blackboard™ and enter into the Virtual Classroom, to begin their online discussions, thereby generating comments and sharing ideas with the other participants.

What we found in this study, in our observations of subjects engaged in the online discussions, was that these discussions allowed for individual assimilation, reflection and critical thinking. Subjects in this study seemed to learn on their own whilst engaged in the online discussions, but for the most part we needed to coach and guide them in the use of the Blackboard Virtual Classroom program. This implied that there needed to be accountability and guidelines for learning, in order for subjects in this study to gain a rich learning experience.
In general, the use of online discussions may directly support individual learning goals that are meaningful and useful. For example, if the learning goal of an individual is to learn how to articulate and defend his or her ideas, the use of online discussions may support that goal. An individual may feel that online discussion tools help to extend the discussions that take place in class. In effect, this helps the individual to gain a deeper understanding of material and it also provides an opportunity for him or her, to apply course content to his or her own experiences. Finally, an individual may learn to appreciate the variety of perspectives that can be shared amongst all participants in online discussions. This study is a cautious yet assured step towards understanding the effects of blended learning on perceived interest of individual students and offers some critical contributions for a lucid and logical understanding of perceived interest of individual students. In light of the limited research on situational interest and intrinsic motivation theory in technology-supported learning environments, the framework presented in this study, may provide constructive discussions for the future.

References

